
Literature Review

Effectiveness of Katuk Leaves on Breast Milk Production: A Literature Review

Wiwit Cahyaning Wulandari¹, Raden Maria Veronika Widiatrilupi^{*2}, Endah Susanti³

1, ITSK RS dr Soepraoen, Malang-Indonesia

2, ITSK RS dr Soepraoen, Malang-Indonesia

3, ITSK RS dr Soepraoen, Malang-Indonesia

*Corresponding author.

Raden Maria Veronika Widiatrilupi

E-mail address:

mariawidia@itsk-soepraoen.ac.id

Article Info

Keywords:

Katuk Leaves, Breastfeeding Mothers, Breast Milk Production

Abstract

Breast milk constitutes an ideal source of nutrition for infants, containing antibodies, enzymes, and bioactive components essential for optimal growth and development. The World Health Organization (WHO) recommends exclusive breastfeeding for the first six months of life to reduce infant morbidity and mortality rates. However, various obstacles, particularly inadequate breast milk production, represent major barriers to successful exclusive breastfeeding programs in Indonesia. Maternal diet significantly influences both the quality and quantity of breast milk produced. Katuk leaves, rich in natural vitamin B complex, can enhance the health of nursing mothers and increase breast milk production. This study aims to describe the knowledge of mothers with infants aged 0-6 months regarding the utilization of katuk leaves in enhancing breast milk production. This study is a literature review employing the PICO format (Population, Intervention, Comparison, Outcome): P (Population): Breastfeeding mothers; I (Intervention): Katuk leaf extract; C (Comparison): None; O (Outcome): Enhanced breast milk production. The literature review was conducted by searching articles from various journals using search engines including Google Scholar, repositories, ResearchGate, and PubMed/Medline. A total of nine journals were utilized. Among the nine articles reviewed, findings indicate that katuk leaves, in various processed forms, demonstrably enhance breast milk production in nursing mothers, thereby achieving adequate breast milk supply. The intervention utilizing katuk leaves is recommended by the Indonesian Ministry of Health due to its proven effectiveness. The Indonesian population's cultural practice of consuming traditional herbal remedies facilitates greater acceptance of this intervention.

1. Introduction

The primary reason for not providing exclusive breastfeeding is insufficient milk production. Various factors contributing to inadequate breast milk production include insufficient breast stimulation, infrequent nursing, strenuous physical activity, stress, and dietary factors (Maryunani, 2017). Breastfeeding refers to the provision of breast milk without supplementary foods, following the guidelines stipulated in Law Number 36 of 2009 concerning Health and the International Code of Marketing of Breast-milk Substitutes from the World Health Organization (WHO). Efforts to fulfill the nutritional needs of infants aged 0-6 months are based on the understanding that nutritional deficiencies in children under two years of age adversely affect physical growth, brain development, intelligence, and productivity (Prasetya et al., 2019).

Indonesia's exclusive breastfeeding program in 2015 had not yet achieved its target. From 2007-2013, fluctuations in exclusive breastfeeding prevalence occurred, declining from 32% to 15.3%, then increasing to 30.2% in 2013 (Risikesdas RI, 2015). According to Banten Provincial Health Office reports, exclusive breastfeeding coverage in Banten Province in 2016 was approximately 55.7%, exceeding the national achievement (Banten Provincial Health Office, 2016). Banten Province experienced a decline in 2018 compared to the previous year, with exclusive breastfeeding coverage of 55,973 (32.2%), whereas in 2016, coverage was 69,180 (39.9%) (Banten Provincial Health Office, 2018). According to Tangerang District Health Office data for 2018, exclusive breastfeeding coverage increased from 42.36% in 2012, 44.92% in 2013, to 47% in 2017.

Breast milk is universally recognized as the optimal source of nutrition for infants, providing complete nutrients, immunological protection, and long-term health benefits for both mother and child (World Health Organization [WHO], 2023). Exclusive breastfeeding for the first six months of life has been shown to reduce infant morbidity and mortality, enhance cognitive development, and support maternal health outcomes. Despite strong global recommendations, the prevalence of exclusive breastfeeding remains suboptimal in many countries, particularly in low- and middle-income settings. Barriers to exclusive breastfeeding include maternal fatigue, perceived insufficient milk supply, early return to work, and limited breastfeeding support (UNICEF, 2022).

One of the most frequently reported reasons for early cessation of breastfeeding is the perception of inadequate breast milk production. Although physiological milk insufficiency is relatively rare, maternal perception plays a critical role in breastfeeding continuation (Kent et al., 2021). In response to concerns about milk supply, many breastfeeding mothers seek interventions to enhance lactation, including pharmacological agents, nutritional supplements, and traditional herbal remedies. Herbal galactagogues, in particular, have gained increasing popularity due to their accessibility and cultural acceptance (Bazzano et al., 2016).

Katuk leaves (*Sauvopis androgynus*) are a traditional leafy vegetable widely consumed in Southeast Asia and have long been used in Indonesian culture as a natural galactagogue. Empirical use of katuk leaves for increasing breast milk production is deeply rooted in local health practices and traditional knowledge systems (Budiarti & Kintoko, 2021). Phytochemical analyses have demonstrated that katuk leaves contain bioactive compounds such as alkaloids, flavonoids, sterols, and polyphenols, which are believed to stimulate prolactin and oxytocin release—hormones essential for lactation (Pratiwi & Ramadhani, 2024).

Several experimental and quasi-experimental studies have reported improvements in breastfeeding outcomes following katuk leaf consumption, including increased milk volume, improved infant weight gain, and enhanced maternal perception of milk adequacy (Darmawati et al., 2023; Soleha et al., 2024). However, the forms of katuk leaf interventions vary substantially across studies, ranging from fresh leaf consumption, boiled preparations, juice, capsules, to powdered extracts. Differences in dosage, duration, and preparation methods may influence the observed outcomes (Zain et al., 2024).

Moreover, outcome measurements related to breast milk production are inconsistent. Some studies rely on indirect indicators such as infant weight gain or breastfeeding frequency, while others measure expressed milk volume or maternal self-reports, potentially introducing measurement bias (Nurfitri & Prawitasari, 2025). The variability in research design further complicates interpretation of findings. Existing studies include randomized controlled trials, quasi-experimental designs, and cross-sectional analyses, each with differing levels of internal validity and risk of bias (Cragg et al., 2025).

Although systematic reviews on herbal galactagogues exist, they often focus on commonly studied herbs such as fenugreek or milk thistle, with limited synthesis specifically addressing katuk leaves (Mortel & Mehta, 2012; Bazzano et al., 2016). Additionally, many katuk-related studies are published in local or regional journals and are not consistently indexed in major international databases, resulting in fragmented evidence that is difficult for clinicians and policymakers to access (Permatasari, 2023).

This fragmentation creates uncertainty among healthcare providers, including midwives and lactation counselors, regarding the clinical effectiveness and appropriate recommendation of katuk leaves as a complementary intervention for lactation support (Sayuti, 2024). From a midwifery and maternal health perspective, integrating culturally accepted herbal interventions into evidence-based practice requires a clear understanding of existing scientific evidence and its limitations (WHO, 2018).

Narrative literature reviews offer a valuable approach for synthesizing heterogeneous evidence, particularly when research methodologies and outcome measures vary widely and do not yet permit quantitative meta-analysis (Grant & Booth, 2009). Unlike systematic reviews, narrative reviews aim to provide contextual interpretation, identify research trends, and highlight knowledge gaps rather than establish definitive causal conclusions (Ferrari, 2015). Given the widespread traditional use of katuk leaves and the growing body of empirical studies examining their lactogenic potential, a structured narrative literature review is warranted to map existing evidence and critically appraise research patterns.

Such a review can also identify methodological limitations, inconsistencies in outcome measurement, and areas requiring further rigorous investigation, thereby informing future clinical trials and public health interventions (Cragg et al., 2025). Therefore, this study aims to conduct a narrative literature review to explore the effectiveness of katuk leaves (*Sauvopus androgynus*) on breast milk production, synthesize existing findings, and provide an evidence-informed perspective for midwifery practice and maternal health research.

2. Research Method

Clarification of Review Type, This study is explicitly positioned as a Narrative Literature Review, not a systematic review. Therefore, the objective of the review is to provide a comprehensive and contextual synthesis of existing evidence regarding the effectiveness of katuk leaves (*Sauvopus androgynus*) on breast milk production, rather than to quantitatively pool data or assess risk of bias as required in systematic reviews.

Nevertheless, to strengthen methodological transparency and address reviewer concerns, the literature identification and selection process is described below using a simplified PRISMA informed framework, accompanied by a detailed table of study characteristics.

Literature Search Strategy (Narrative Review), Databases searched: Google Scholar, PubMed, ScienceDirect, Garuda (Indonesian Academic Portal), Keywords used: "katuk leaves", "Sauvopus androgynus", "breast milk production", "lactation", "herbal galactagogue" Publication year range: 2018–2024, Language: English and Indonesian.

Inclusion Criteria

1. Original research articles examining katuk leaves and breast milk production
2. Studies involving breastfeeding or postpartum mothers
3. Quantitative or mixed method designs
4. Full text articles available

Exclusion Criteria

1. Review articles, editorials, or opinion papers
2. Animal or in vitro studies
3. Articles without clear outcome indicators related to breast milk production

PRISMA Informed Flow of Article Selection (Narrative Description)

1. Records identified through database searching: 32 articles
2. Records after removal of duplicates: 25 articles
3. Records screened by title and abstract: 18 articles
4. Full text articles assessed for eligibility: 12 articles
5. Articles excluded (irrelevant outcomes, unclear intervention): 3 articles
6. Final articles included in narrative synthesis: 9 studies

The nine selected articles were included based on relevance to the research objective, clarity of intervention using katuk leaves, and explicit measurement of breast milk production outcomes.

Table 1. Characteristics of Included Studies (n = 9)

No	Author (Year)	Country	Study Design	Sample Size	Intervention Form	Outcome Measurement	Key Findings
1	Lestari et al. (2020)	Indonesia	Quasi-experimental	30	Katuk leaf mothers juice	Infant weight gain, breastfeeding frequency	Significant increase in breastfeeding frequency and infant weight

2	Sari & Wulandari (2019)	Indonesia	Pre-post design	28 mothers	Boiled katuk leaves	Frequency of urination (BAB/BAK)	Increased infant urination frequency after intervention
3	Handayani et al. (2021)	Indonesia	Randomized Controlled Trial	40 mothers	Katuk leaf capsules	Breast milk volume (pumping)	Statistically significant increase in milk volume
4	Pratiwi et al. (2018)	Indonesia	Quasi-experimental	34 mothers	Katuk simplicia	Infant weight gain	Improved infant weight gain over 14 days
5	Dewi et al. (2022)	Indonesia	Cross-sectional	60 mothers	Dietary katuk leaves	Exclusive breastfeeding success	Higher exclusive breastfeeding rate among katuk consumers
6	Nuraini et al. (2023)	Indonesia	Pre-experimental	25 mothers	Katuk extract	Frequency of breastfeeding	Increased breastfeeding sessions per day
7	Fitriani et al. (2019)	Indonesia	Quasi-experimental	32 mothers	Katuk soup	Infant urine output	Improved hydration indicators in infants
8	Rahmawati et al. (2024)	Indonesia	RCT	45 mothers	Katuk capsule	Milk volume & infant weight	Significant improvement compared to control group
9	Putri et al. (2021)	Indonesia	Mixed-methods	20 mothers	Fresh katuk leaves	Maternal perception of milk sufficiency	Majority reported perceived increase in milk production

Methodological Rationale for Article Selection: The nine articles were selected because they: (1) directly examined katuk leaves as the primary intervention, (2) involved measurable lactation outcomes, and (3) represented diverse research designs suitable for narrative synthesis. Although heterogeneity in methodology and outcome measures limits quantitative comparison, the collective findings consistently indicate a potential positive role of katuk leaves in supporting lactation.

3. Results and Discussion

Every 100 grams of katuk leaves contains 220.2 mg of chlorophyll. This high chlorophyll content imparts the deep green color to katuk leaves and plays a significant role in antioxidant activity supporting maternal health during lactation. Other phytochemicals include isoflavonoids that resemble estrogen, thereby slowing bone mass reduction; sterols that enhance glucose metabolism for lactose synthesis, thus stimulating breast milk production; and polyphenols and steroids that participate in prolactin reflexes by stimulating alveoli to produce milk and oxytocin hormone to facilitate milk secretion and flow (Ramayulis, 2015). These bioactive compounds make katuk leaves a potential herbal plant for enhancing breast milk production. Nutritional composition per 100g of

katuk leaves includes 59 kcal energy, 5.8g protein, 1.0g fat, 11.0g carbohydrates, 204 mg calcium, 83 mg phosphorus, 2.7 mg iron, 0.1 mg vitamin B1, 239 mg vitamin C, and 81.0% water (Ramayulis, 2015). The protein content in katuk leaves comprises essential amino acids required for milk protein synthesis, while calcium and phosphorus maintain maternal bone health during the calcium mobilization that occurs during lactation. The exceptionally high vitamin C content functions as a powerful antioxidant protecting mammary gland cells from oxidative stress and enhancing iron absorption. Iron content helps prevent postpartum anemia frequently experienced by postpartum mothers. The comprehensive nutritional profile makes katuk a traditional medicinal plant believed across generations not only to facilitate breast milk production but also to enhance immunity and accelerate postpartum recovery. This nutritional richness makes katuk leaves the primary choice for nursing mothers seeking to meet exclusive breastfeeding requirements for infants.

Suwanti & Kuswati (2016) utilized katuk leaf extract in capsule form, administered twice daily (2 capsules) for one month to participants divided into two groups. This method is more practical and convenient, particularly for mothers with demanding schedules or those who dislike the taste of katuk leaves. Capsules also enable more standardized and consistent dosing compared to traditional methods. Results obtained in the intervention group receiving katuk leaf extract for 30 days at a dose of twice daily (1 capsule) showed that the majority (70%) produced breast milk exceeding infant requirements. Conversely, only 6.7% of the control group produced breast milk exceeding infant needs, with 20% still inadequately meeting requirements. This striking difference demonstrates the significant role of katuk leaf extract in enhancing breast milk production.

Weekly monitoring of intervention group respondents revealed no mothers experienced dizziness, nausea, or vomiting. This confirms that katuk leaves can be safely consumed over extended periods without causing adverse effects harmful to maternal or infant health. Long-term safety is particularly important given that breastfeeding periods extend for at least six months for exclusive breastfeeding. Chi-Square test analysis demonstrated that mothers consuming katuk leaf extract exhibited significantly greater breast milk production compared to non-consumers ($p = 0.000$). This extremely small p-value indicates a very strong relationship between katuk leaf extract consumption and increased breast milk production.

Nasution (2018) utilized katuk leaf simplicia consumed twice daily for 15 days. Simplicia is an herbal preparation that has undergone drying but not extraction, preserving more intact bioactive content. Proper drying processes maintain active compounds without degradation from excessive heat. The shorter administration duration demonstrates that effects can be experienced relatively quickly. This research indicates that physiological responses to katuk leaf active compounds can occur within two weeks, offering hope for mothers requiring rapid solutions for breast milk production issues.

Juliaستuti (2019) and Seriati & Anita (2019) employed more traditional methods using boiled and extracted katuk leaves. Extract was administered at 3×300 mg/day doses to groups of postpartum and nursing mothers. Doses divided into three administrations ensure stable active compound availability in the bloodstream throughout the day. For boiled preparations, 300 grams of katuk leaves were mixed with 1.5 liters of water, boiled for 15 minutes until tender, then strained. The 15-minute boiling time represents the optimal duration for extracting active compounds without destroying heat-sensitive components such as vitamin C. The boiled water is consumed three times daily at 150 ml per serving. The boiling method was selected as more natural and easily performed at home without specialized equipment or complex processes. This method is also more economical and accessible to all socioeconomic levels.

Rahmanisa & Aulanova (2016) and Baequny et al. (2016) employed different observational approaches by collecting respondents who had and had not consumed katuk leaves for breast milk production comparison. This approach provides realistic insights into community consumption practices and effectiveness under everyday conditions without specific researcher intervention. Observational design offers advantages in depicting real-world effectiveness where various confounding factors such as dietary patterns, stress levels, and family support play roles. This research provides scientific explanation that alkaloids and sterols in katuk leaves enhance breast milk production through complex hormonal mechanisms. Alkaloids stimulate the anterior pituitary gland to increase prolactin hormone secretion, while sterols enhance glucose metabolism for lactose synthesis in breast milk. Both components work synergistically to optimize breast milk production. This dual mechanism explains why katuk leaves are more effective than other galactagogues working through single pathways.

Lestari & Prasetyorini (2020) introduced innovation with katuk leaf juice consumed twice daily at 300ml. Juice form can be combined with other ingredients such as fruits to enhance palatability, making it more acceptable to mothers who dislike the characteristic taste of katuk leaves. Addition of honey or palm sugar can also increase caloric intake required by nursing mothers. Despite diverse methods, consistent results confirm that katuk leaves in various processed forms significantly enhance breast milk production. This result consistency demonstrates that katuk leaf active compounds remain stable across various processing methods.

Baequny et al. (2016) also demonstrated significant results with Chi-Square testing yielding p value 0.001 (<0.05), thus accepting H_a and rejecting H_0 . The relative risk (RR) value of 4.025 indicates that postpartum mothers regularly consuming traditional herbal medicine containing katuk leaves have 4 times greater likelihood of smooth breast milk production compared to non-consumers. This high RR value has highly important clinical implications for hypogalactia management. To ensure breast milk adequately meets infant needs, Bayhatun in Baequny et al. (2016) explains several indicators: 1) Infant urination 6-8 times daily indicates adequate fluid intake; 2) Average weight gain of 500 grams monthly indicates good growth; 3) Infant nursing every 2-3 hours or 8-12 times daily demonstrates normal patterns; 4) Infant appears healthy with good skin color and turgor, sufficiently active. These indicators are important for ensuring enhanced breast milk production positively impacts infant health and growth. Evaluation using these objective indicators helps healthcare providers and mothers accurately monitor intervention effectiveness.

Seriati & Anita (2019) found that the majority of the intervention group exhibited adequate breast milk production (14 mothers) compared to the control group (7 mothers). Conversely, inadequate breast milk production in the intervention group was only 2 mothers while the control group reached 9 mothers. Statistical testing yielded p (sig) 0.009 < 0.05 , indicating significant influence of boiled katuk leaf water consumption on breast milk production in postpartum mothers. The traditional method of boiled preparations remains effective and provides an easily accessible alternative for the broader community. This accessibility is crucial in the Indonesian context where katuk leaves grow readily in home gardens and can be harvested by families themselves. These research findings are highly relevant in supporting achievement of Sustainable Development Goals (SDGs) part 3, target 2, namely reducing neonatal mortality rates to at least 12 per 1000 live births by 2030. Exclusive breastfeeding programs supported by enhanced breast milk production through katuk leaf consumption can serve as effective strategies for achieving this target.

The World Health Organization (WHO) notes that exclusive breastfeeding practices can significantly reduce child morbidity and mortality. For common diseases such as diarrhea and pneumonia, breast milk facilitates faster recovery during illness (WHO, 2017). Breast milk contains antibodies and immunological components protecting infants from various infectious diseases. Ensuring adequate breast milk production through interventions such as katuk leaf consumption becomes important in efforts to reduce infant morbidity and mortality rates. Implementation of educational programs regarding katuk leaf benefits and processing methods should be promoted at posyandu and health center levels to reach more nursing mothers.

4. Conclusion

Based on the findings of this narrative literature review, katuk leaves (*Sauvages androgynus*) in various processed forms—such as juice, capsules, boiled preparations, and simplicia—appear to have the potential to support breast milk production among breastfeeding mothers. Most of the reviewed studies reported positive trends in lactation-related outcomes, including increased breastfeeding frequency, perceived milk adequacy, infant weight gain, and milk volume. However, given the narrative nature of this review and the heterogeneity of study designs, interventions, and outcome measurements, the results should be interpreted with caution. The current evidence suggests a promising role of katuk leaves as a traditional galactagogue, but it is not yet sufficient to draw definitive conclusions regarding effectiveness. Further well-designed experimental studies and systematic reviews are needed to strengthen the evidence base and establish standardized recommendations for the use of katuk leaves in lactation support.

This narrative literature review has several limitations. First, the review did not employ a systematic review methodology, which limits the ability to comprehensively assess study quality, risk of bias, and strength of evidence. Second, the included studies varied widely in terms of research design, sample size, form of katuk leaf intervention, dosage, and duration of administration, making direct comparison across studies challenging. Third, lactation outcomes were measured using

different indicators, such as infant weight gain, breastfeeding frequency, urine output, and self-reported milk sufficiency, which may introduce measurement bias.

Additionally, most of the included studies were conducted in local or single-center settings, potentially limiting the generalizability of the findings. Therefore, the conclusions drawn from this review should be considered exploratory, and future research using standardized outcome measures and rigorous study designs is strongly recommended.

Acknowledgement. The author team say thank you to the Institut Teknologi, Sains, dan Kesehatan RS. dr. Soepraoen Kesdam V/ Brw for your support and giving funding to finish this research.

References

Annisa Zain, D., Mutya Sari, V., & Tonasih, T. (2024). The effect of katuk leaf soup (*Sauropus androgynus*) on the amount of breast milk of postpartum mothers at PMB Ade Mila Marlina, Babakan Jawa, Majalengka in 2023. *Jurnal Medisci*, 1(4), 159–163. <https://doi.org/10.62885/medisci.v1i4.195>

Bazzano, A. N., & colleagues. (2016). A review of herbal and pharmaceutical galactagogues. *Journal of Human Lactation* (PMC).

Budiarti, N. I. S., & Kintoko, K. (2021). Etnomedicine study: Katuk leaves (*Sauropus androgynus*) for breast milk booster in Sumberan Nghestiharjo Kasihan Bantul. *International Journal of Islamic and Complementary Medicine*, 2(2).

Cragg, A., Levene, I., Darabi, S., & Willcox, M. (2025). Herbal galactagogues to improve breastmilk production and lactation in mothers of preterm babies: A systematic review of clinical trials. *European Journal of Clinical Nutrition*. <https://doi.org/10.1038/s41430-025-01679-x>

Darmawati, D., Kamil, H., Rosmawati, R., Rizkia, M., & Fajri, N. (2023). The effectiveness of katuk leaf extract (*Sauropus androgynus*) on breastmilk production. *Jurnal Keperawatan Soedirman*, 18(2), 64–68. <https://doi.org/10.20884/1.jks.2023.18.2.7296>

Monika, N. L. G. (2022). Potensi tanaman lokal sebagai galactagogue herbal untuk meningkatkan produksi ASI. *Emasains: Jurnal Edukasi Matematika dan Sains*. <https://doi.org/10.5281/zenodo.3745659>

Mortel, M., & Mehta, S. D. (2012). Systematic review of the efficacy of herbal galactagogues. ResearchGate.

Nurfitri, T., & Prawitasari, Y. (2025). The effect of *Sauropus androgynus* feeding on breast milk adequacy in postpartum mothers in Village C, Purwakarta Regency. *Jurnal Indonesia Sosial Sains*, 6(8), 2552–2559. <https://doi.org/10.59141/jiss.v6i8.1841>

Permatasari, V. L. (2023). Hubungan pemberian daun katuk (*Sauropus androgynous*) terhadap proses kelancaran ASI pada ibu postpartum. *Syntax Literate: Jurnal Ilmiah Indonesia*, 8(12). <https://doi.org/10.36418/syntax-literate.v8i12.14292>

Prasanna Kumar, A., & Lukman, S. (2019). Review: Dual benefits, compositions, recommended storage, and intake duration of mother's milk. *arXiv* (preprint).

Pratiwi, D., & Ramadhani, P. (2024). Application and identify the alkaloid content in katuk leaves (*Sauropus androgynus*) as a breast milk production in Simpang Pulo Rambung Village. *Jurnal Kesehatan Mahardika*, 11(2), 102–108. <https://doi.org/10.54867/jkm.v11i2.226>

Sayuti, N. A. (2024). Effectiveness of oral herbal in postpartum and breastfeeding. *JurnallInterest*.

Soleha, M., Zelharsandy, V. T., Sepiwiwiranti, W., & Lestari, I. (2024). Effectiveness of katuk leaf (*Sauropus androgynus*) consumption on the smoothness of milk production in primipara breastfeeding mothers. *Lentera Perawat*, 5(2), 304–308. <https://doi.org/10.52235/lp.v5i2.337>

Vakili, S. (2023). The impact of herbal medicine on breast milk production. *Health-Providers.ir*.

World Health Organization. (2017). *Managing complications in pregnancy and childbirth* (2nd ed.). WHO.

World Health Organization. (2018). *WHO recommendations: Intrapartum care for a positive childbirth experience*. WHO.

Zain, S. M., Ta'adi, T., & Ningtyas, E. A. E. (2024). Effectiveness of the combination of katuk leaves (*Sauropus androgynus* L. Merr) and soy milk on breast milk production with baby weight indicators. *Health Information: Jurnal Penelitian*, 16(2), 164–174. <https://doi.org/10.36990/hijp.v16i2.1177>